1,262 research outputs found

    Agricultural Biotechnology: Before You Judge

    Get PDF

    An integrated cryogenic optical modulator

    Full text link
    Integrated electrical and photonic circuits (PIC) operating at cryogenic temperatures are fundamental building blocks required to achieve scalable quantum computing, and cryogenic computing technologies. Optical interconnects offer better performance and thermal insulation than electrical wires and are imperative for true quantum communication. Silicon PICs have matured for room temperature applications but their cryogenic performance is limited by the absence of efficient low temperature electro-optic (EO) modulation. While detectors and lasers perform better at low temperature, cryogenic optical switching remains an unsolved challenge. Here we demonstrate EO switching and modulation from room temperature down to 4 K by using the Pockels effect in integrated barium titanate (BaTiO3)-based devices. We report the nonlinear optical (NLO) properties of BaTiO3 in a temperature range which has previously not been explored, showing an effective Pockels coefficient of 200 pm/V at 4 K. We demonstrate the largest EO bandwidth (30 GHz) of any cryogenic switch to date, ultra-low-power tuning which is 10^9 times more efficient than thermal tuning, and high-speed data modulation at 20 Gbps. Our results demonstrate a missing component for cryogenic PICs. It removes major roadblocks for the realisation of novel cryogenic-compatible systems in the field of quantum computing and supercomputing, and for interfacing those systems with the real world at room-temperature

    Disassembly of Li Ion cells—characterization and safety considerations of a recycling scheme

    Get PDF
    It is predicted there will be a rapid increase in the number of lithium ion batteries reaching end of life. However, recently only 5% of lithium ion batteries (LIBs) were recycled in the European Union. This paper explores why and how this can be improved by controlled dismantling, characterization and recycling. Currently, the favored disposal route for batteries is shredding of complete systems and then separation of individual fractions. This can be effective for the partial recovery of some materials, producing impure, mixed or contaminated waste streams. For an effective circular economy it would be beneficial to produce greater purity waste streams and be able to re-use (as well as recycle) some components; thus, a dismantling system could have advantages over shredding. This paper presents an alternative complete system disassembly process route for lithium ion batteries and examines the various processes required to enable material or component recovery. A schematic is presented of the entire process for all material components along with a materials recovery assay. Health and safety considerations and options for each stage of the process are also reported. This is with an aim of encouraging future battery dismantling operations

    Report of the panel on earth rotation and reference frames, section 7

    Get PDF
    Objectives and requirements for Earth rotation and reference frame studies in the 1990s are discussed. The objectives are to observe and understand interactions of air and water with the rotational dynamics of the Earth, the effects of the Earth's crust and mantle on the dynamics and excitation of Earth rotation variations over time scales of hours to centuries, and the effects of the Earth's core on the rotational dynamics and the excitation of Earth rotation variations over time scales of a year or longer. Another objective is to establish, refine and maintain terrestrial and celestrial reference frames. Requirements include improvements in observations and analysis, improvements in celestial and terrestrial reference frames and reference frame connections, and improved observations of crustal motion and mass redistribution on the Earth

    Population demography maintains biogeographic boundaries

    Get PDF
    Funding Information: This manuscript was the result of a working group funded by a Quebec Center for Biodiversity Science grant to JPL and KEM. We thank Ben Holt and the Center for Macroecology, Evolution and Climate for sharing their map of mammal biogeographic regions. We thank Laura Pollock, Isaac Eckert and Federico Riva for comments on the written document and discussion of the topic. We also thank Anna Hargreaves, Brian Leung, Jonathan Belmaker, Lilian Sales and Shahar Chaikin for additional discussions. We are also grateful to the authors whose work provided the raw data for this synthesis. KEM is supported by a NSERC Discovery Grant. GM and JPL were supported by the Concordia University Research Chair in Biodiversity and Ecosystem Functioning. GM is additionally supported by a Concordia Graduate Fellowship. CS and CJG were supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to CJG. CS was also supported by a U. Manitoba Graduate Fellowship, and a U. Manitoba Graduate Enhancement of Tri‐council funding grant to CJG. The authors declare no conflict of interest.Peer reviewedPostprin

    Dark Matter and Baryons in the Most X-ray Luminous and Merging Galaxy Cluster RX J1347.5-1145

    Full text link
    The galaxy cluster RX J1347-1145 is one of the most X-ray luminous and most massive clusters known. Its extreme mass makes it a prime target for studying issues addressing cluster formation and cosmology. In this paper we present new high-resolution HST/ACS and Chandra X-ray data. The high resolution and sensitivity of ACS enabled us to detect and quantify several new multiply imaged sources, we now use a total of eight for the strong lensing analysis. Combining this information with shape measurements of weak lensing sources in the central regions of the cluster, we derive a high-resolution, absolutely-calibrated mass map. This map provides the best available quantification of the total mass of the central part of the cluster to date. We compare the reconstructed mass with that inferred from the new Chandra X-ray data, and conclude that both mass estimates agree extremely well in the observed region, namely within 400 / h_70 kpc of the cluster center. In addition we study the major baryonic components (gas and stars) and hence derive the dark matter distribution in the center of the cluster. We find that the dark matter and baryons are both centered on the BCG within the uncertainties (alignment is better than <10 kpc). We measure the corresponding 1-D profiles and find that dark matter distribution is consistent with both NFW and cored profiles, indicating that a more extended radial analysis is needed to pinpoint the concentration parameter, and hence the inner slope of the dark matter profile.Comment: 12 pages, Accepted for publication in ApJ, full-res version http://www.physics.ucsb.edu/~marusa/RXJ1347.pd

    Electroactive polymers for sensing.

    Get PDF
    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer-metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units.This is the final version of the article. It first appeared from The Royal Society Publishing via https://doi.org/10.1098/rsfs.2016.002

    Gemini Planet Imager Observational Calibrations VI: Photometric and Spectroscopic Calibration for the Integral Field Spectrograph

    Full text link
    The Gemini Planet Imager (GPI) is a new facility instrument for the Gemini Observatory designed to provide direct detection and characterization of planets and debris disks around stars in the solar neighborhood. In addition to its extreme adaptive optics and corona graphic systems which give access to high angular resolution and high-contrast imaging capabilities, GPI contains an integral field spectrograph providing low resolution spectroscopy across five bands between 0.95 and 2.5 ÎŒ\mum. This paper describes the sequence of processing steps required for the spectro-photometric calibration of GPI science data, and the necessary calibration files. Based on calibration observations of the white dwarf HD 8049B we estimate that the systematic error in spectra extracted from GPI observations is less than 5%. The flux ratio of the occulted star and fiducial satellite spots within coronagraphic GPI observations, required to estimate the magnitude difference between a target and any resolved companions, was measured in the HH-band to be Δm=9.23±0.06\Delta m = 9.23\pm0.06 in laboratory measurements and Δm=9.39±0.11\Delta m = 9.39\pm 0.11 using on-sky observations. Laboratory measurements for the YY, JJ, K1K1 and K2K2 filters are also presented. The total throughput of GPI, Gemini South and the atmosphere of the Earth was also measured in each photometric passband, with a typical throughput in HH-band of 18% in the non-coronagraphic mode, with some variation observed over the six-month period for which observations were available. We also report ongoing development and improvement of the data cube extraction algorithm.Comment: 15 pages, 6 figures. Proceedings of the SPIE, 9147-30

    Causality in relativistic many body theory

    Get PDF
    The stability of the nuclear matter system with respect to density fluctuations is examined exploring in detail the pole structure of the electro-nuclear response functions. Making extensive use of the method of dispersion integrals we calculate the full polarization propagator not only for real energies in the spacelike and timelike regime but also in the whole complex energy plane. The latter proved to be necessary in order to identify unphysical causality violating poles which are the consequence of a neglection of vacuum polarization. On the contrary it is shown that Dirac sea effects stabilize the nuclear matter system shifting the unphysical pole from the upper energy plane back to the real axis. The exchange of strength between these real timelike collective excitations and the spacelike energy regime is shown to lead to a reduction of the quasielastic peak as it is seen in electron scattering experiments. Neglecting vacuum polarization one also obtains a reduction of the quasielastic peak but in this case the strength is partly shifted to the causality violating pole mentioned above which consequently cannot be considered as a physical reliable result. Our investigation of the response function in the energy region above the threshold of nucleon anti-nucleon production leads to another remarkable result. Treating the nucleons as point-like Dirac particles we show that for any isospin independent NN-interaction RPA-correlations provide a reduction of the production amplitude for ppˉp\bar p-pairs by a factor 2.Comment: 19 pages Latex including 12 postscript figure
    • 

    corecore